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also some approximate approaches to the construction of the models of regular structures. 
Thus, we have proved the - 
Theorem. The deformation of an arbitrary regular elastic structure, possessing the 

property of quasi-periodicity of the displacements, is identical “in the large” with the 

deformation of the homogeneous anisotropic medium, characterized by the relations 

(5.7). 
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An approximate method of calculating the echo signal of a finite, centrally- 
symmetric pressure pulse from an infinite elastic cylindrical shell in an infinite 

ideal compressible fluid is proposed. The shell motion is described by using a 
linear shell theory of Timoshenko type. The problem is solved by a triple appli- 
cation of integral transformations (in time and the longitudinal coordinate, a 
Fourier transform, and in the polar angle, a Sommerfeld- Watson transform). 

The nonstationary interaction of spherical pressure pulses in a fluid with an 

elastic cylindrical shell has been studied in [l - 31, where a Laplace time trans- 
formation, a Fourier transformation in the longitudinal coordinate, and either a 
Fourier series expansion [ 1, 33 or a Fourier transformation [2] in the polar angle 
have been used to solve the problem. However, calculation of the rapidly vary- 

ing components of the Fourier-series solution id difficult because of the slow 

convergence. Difficulties in inverting the transform appear in the application 
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of the Fourier transform in the polar angle; the saddle point method used in [Z] 
does not permit taking correct account of the influence of the elastic waves 

being propagated in the shell. 
A Sommerfeld-Watson transformation in the polar angle, which admits of a 

more exact inversion, is applied herein. A Fourier transform in time has been 
chosen instead of the Laplace tranform used in [l- 31. The solution in the space 
of the Fourier time transform can be treated as the solution of the corresponding 

stationary problem, and this permits using the experience acquired in solving 
stationary problems, and analyzing the solution in transform space. 

This paper is an extension of the method of compiling the algorithm devel- 

oped on the basis of [4-61 to a cylindrical shell ( l ) . 

1. Formulation of the problem. Let R, 6, E be cylindrical coordinates, 
t the time (t = 0 h w en the beginning of the pulse emerges from the source), Pi (R, 
6, E, t) the incident pressure pulse, P, (R, 6, E, t) the scattered pressure field 
(echo signal), c the speed of sound in the fluid, p the fluid density, L the distance 
from the center of the source, R, the distance between the center of the source and 
the shell axis, R,,, h the middle surface radius and the shell thickness, respectively, 
E, Y, p1 the elastic modulus, the Poisson’s ratio, and the density of the shell material, 
respectively, u, G, w the displacements, &, $J+ the angles of rotation in a Timo- 
shenko type shell theory, Q the normal pressure acting on the shell, and t, the incident 

pulse duration. 
Let us use the dimensionless cylindrical coordinates 

r=RIR,, 6, E=EIR,, z=ctIR, (I.0 

and the dimensionless quantities 

On the basis of geometry 

1 Z (E” + y2)%, y = (r2 + To2 - 2rr,cos 6)” (I.31 

Let a source with center 0 (rO, 0, 0) radiate a finite spherical pressure pulse 

Pi = A,Z-‘f (T - Z) IH (T - 1) - H (T - 2 - z,)] (1.4) 

in an ideal compressible fluid. Here A 0 is a constant governing the pulse amplitude, 
f is the law of pressure variation in the pulse, H is the Heaviside function. The pulse 

l ) Metsaveer, Ia. A., Algorithm to calculate echo signals from an elastic spheri- 
cal shell in a fluid by summing separate groups of travelling waves. Preprint Np3, Inst. 
of Cybernetics ESSR Acad. of Science, Tallin, 1971. 
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(1.4) is incident on a shell with middle surface r = 1 , and being dissipated theoron, 
generating elastic waves in the shell which, in turn, excite a radiated pressure field in 

the surrounding medium. 
To describe the elastic waves in the shell, let us use equations of a Timoshenko-type 

shell theory [7] 

Lij Qj = - 6ibXw1q i=1,2 ,..., 5; i=1,2 ,..., 5 (1.5) 

L _1+v 8% 

13- -qw 2 

Lz2 = a2 f + 
( 

L14=0, L,,=Y$ L2,=a2(-&a&- PG) 
a a6” aa - p g2) - k& L,3 = 0, L,, = a2 q& 

a 
Las = - k&t%, 

1+v aa 
L31=-7- W' L33 = 0, L3, = a T$- + (1 + a”)($ - 

k&t - p g2, L3, = a2 (a 6 - g + ka2a - /3 sA) + kia 

Lg5 = (1 + u”) (1 -+ ke2a) $, LQL = 0, Lg2 = v a2 & 

L,, = a2 
t 
a g2- g2 + k&x - p$&) + kg2a, Ld4 = a2 (a $ + 

aa 
- - ke2a - p $) - ke2a, aw 

L,, = - [ (1 + a2) ka2a + a21 $ 

L,~=--Y$ L,,=k$a;, L,3=-_(l+~2)(1+k~24& 

a 
La = [(I + a2) baa + a21 - , d6 

L33 = ke23: g2 + 

(I + ~2) (k& $ - 1) - p +&, ka2 = kc2 = g 

The scattered pressure field pet consisting of the field reflected from the shell surface 
and the radiated field, should satisfy a wave equation as does the incident pulse (1.4) 

[;+-I;;+:g+&gj]P,=o (1.6) 

Let us take the following contact conditions on the middle surface : 

IPi + PrL = -q, [dpi I 8r + ape I dr]j-=l = -82m5 1 a22 (1.7) 

Since the Fourier transform in time is used, the initial conditions are not formulated in 
the customary sense, but all the components of the solution are assumed to be zero as 

r-+faJ 

2. Solution in the trrnaform rprce. Let us define the Fourier transform- 

ations in the time z and the longitudinal coordinate -E by means of the formulas 

p(r, 6, E, T) = y pF (r, 6, E; z) emixs & 
--oo 

(2.1) 
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pFF fr, @; h, cc)= & \ pF (r, 4, E; 5) eihUE . (2.2) 

On the basis of (2. I) we have 

p,F = A,,?rg (z) eilx (2.3 

f2.4) 

Furthermore, transforming (2,3) by means of (2.2). taking account of (1.3). we obtain 

pFP= ‘/,iAog (z) Ho@) (yq), q = (x” - hy’” (2.5) 

Here H,,(l) is the zero order Hankel function of the first kind. Using the “addition the- 
orem” for HO (1), let us represent (2.5) as (J, is the Bessel function) 

p”” -_ $iA,&) 5 e,,H$ fq’b) 3, (qr) cos mB, F, = 2 - s,, (z*q 
?i%=B 

The echo signal in the space of the double Fourier transform can also be represented in 
the form of series. Taking account of (2.6) and the radiation condition at infinity [8] 

Em,,, r’i+Q~~~ f dr - irjp,FF) = 0 

let us seek the transformed echo signal in the form 

(a.?) 

Here b, is to be catculated on the basis of (1.5) and the contact ~nd~t~o~ (1.7). The 
solution of the system (1.5) in the space of the double Fourier transform can be repre- 
sented as 

n=n 

Substituting (2,6), (2.8), (2,9) into (1.5) and the contact condition (X.7) after transform- 

ation by means of (2.1). (2.2) in the double Fourier transform space, we obtain 
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a 13 = -iAm (1 + v) / 2, aI4 = 0, aI5 = -iviL, a,, = a2 (A* - 

am2 - j32), uzz = a2 (IL’ + am2 - fh2) -j- kE2a, a23 --_ 0 

a24 = -Ama (1 + v) / 2, uz5 r= k$aiA, u31 r- -iilLm (1 -;- v) / 2 

a32 = 0, u33 = -aA - (1 + a2) (m” + ka2a) + flz2, as4 = a2 (m’ - 

ah2 + ka2a + fh”) + ke2a, U35 = -( 1 + a2) (1 + /~~“a) m 

a41 = 0, a42 = -Ama’ (1 + v) 12, a43 = a2 (m” - ah2 + ke2a + 

Bx:“) + b2a, a4, = -a2 (ah2 + m2 + kG2a - bx2) - k62a 

a45 = [(I + a2) ka2a + a21m, usI = -ivh, a52 = kz”aiA 

a53 = -(I + a2) (1 + liB2a) m, a54 = I(1 + U2) li'tr2a _t- a'] m 

u55 = -k$a?? - (1 + a2) (ka2am2 + 1) + px2 

Here A,, is the corresponding cofactor of the determinant D. 

The series (2.8) is summed by using the Sommerfeld-Watson transform [9] 

5 e,Ji, cos m6 = i \ FIA sin-l pal cm p (n - I?) dp, (2.11) 
m=o c 

The contour of integration r which passes through the origin includes the positive 
part of the real axis in a clockwise direction on the complex p plane. Taking account 

of (2. ll), the transformed echo signal (2. 8) can be rewritten as the integral 

pf+F = - f Aog (x) \ b, H,!,!’ (qr,J Hfj (q r sill-’ ]LZ cos p (n - $1) dp ) (2.12) 

i, 

Using the relationship 
Jp (7) = l/z iti;’ (7) + @’ (rl)l 

the integral (2.12) can be rewritten as 

pfF _ + A,g @) \ F;‘F2Rp Sin-’ PL” cos p (n - 6, % 
(2.13) 

Here 5 

F,,, = x~A,, - qlcD [tM;s2’ (~)/dq] [H;*2’(q)]-1 (2.14) 

I&+ = Hf’ (qr,) H,!” (qr) HF’ (7) [IT:” (Q-l (2.15) 

It is necessary to replace m everywhere by p in the elements of the determinant D 
when evaluating F1,2 , where /A. is a complex number. 

Let us turn attention to the fact that the Hankel functions in (2.13) are partially col- 
lected in R,and partially in F,,?. Consequently, the function R, is related just to the 
shell geometry, and the function F,,, to its elasticity. In the limit case when x : 0, 
the ratio F1-rF, equals unity which corresponds to the case of an “acoustically soft” 
cylinder. 

Now using the relationships [lo] 

cos, p (JI _ 6) = t/2 [& (;rmO) + e-W C--Q] 

m 
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and the definitions (2.1). (2.2). taking account of (2.13). the echo signal can be repre- 
sented as 

pe=- +I, i 5 T P(S)! s F;l F,R, ei!l*_8nk - he - m, dp%dx 
h=l n=o ts --acr 

6,,=6+2nn, 6,, = 2n - 6 + 2nfi (2.16) 

3. Inver~fon of the Fourier ttrntfotmrtion in the longitudinrl 
coordinate. Let us represent the echo signal (2.16) as 

pe = - t iA, (3.1) 

(3.2) 

To evaluate the integral (3.2). let us replace the Hankel functions in Rp by their 
asymptotic Debye representations [9] 

@j’@(r)) z (2 / nr~)‘/z (1 - z2)-‘/4exp [ti (0 - n / 4)1 

0 = q [(I - z2)‘/2 - 2 arccos 21, z = p-l 

Substituting (3.3) into (2.15) we have 

(3.3) 

Here 

R, = (2 / q) (r,r)-“2 D (z) exp {iq M (z) + z &)I} 

D (z) = [(I - z2rom2) (1 - z2rm2)]-‘/a, d (z) = (r,,2 - z2)‘/p + (ra - 
2 (1 - 22)“, 

h (z) = 2 arccos 2 - arccos (zro-l) - arccos (~9) 

For rO>l, r>lf ormula (3.5) simplifies to the form 

D (z) = 1, d (z) = r,, -I- F - 2 (1 - z2)‘/z, h (z) = 2arccos 2 

(3.4) 

z~)% - 

(3.5) 

-n (3.6) 

It is proposed to evaluate the Hankel functions in (2.14) by more exact methods. This 

recommendation is based on the following considerations. For very low and very high 
frequencies, the influence of the elastic properties of the scatterer on the scattered pres- 
sure field turn out to be immaterial [lo]. The application of asymptotic represenrations 
which are valid for either low or high frequencies, will only give approximate results in 
the computation of the function R, and in the computation of F,, P, , incorrect results 
are possible. 

Substituting (3.4) into the integral (3.2). taking account of the representation for 7 
in (2.5). we have m 

5 exp {i [(x” - h2)“2~n,r (z) - hEJ} dh 
--m 

rp, ,z (4 = d (4 + z b (4 + fin,1 (3.7) 

Ler us invert the integral (3.7) by the saddle point method. The saddle point has the 

coordinate 
h nk = -4 [‘pnk2 (z) + E”]-“1 
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and by using the standard technique we obtain 

%sk (‘) = h;, tz) + E21”* 
4. Inverrion of the Sommerfeld- Watron transform. Taking account 

of (3.8) and the relationship for 2 from (3.3), let us give the echo-signal (3.1) the form 

pe = A, (2ror)+ ,I$ f$ 1 g (x) M,ke-i%x (4.1) 
k=l nzlj --oL, 

(4.2) 

Here the contour rz on the z plane corresponds to the contour r on the p plane. In 
order to evaluate the contour integral (4.2) it is expedient to deform the contour of 
integration rz so that the main contribution of the integral is determined by the por- 

tion of the contour enclosing the pole in the first quadrant of the z plane [ll]. The 
initial contour of integration r_ and the deformed contour consisting of the sections 

rO, I& rP. are represented in Fig. 1. It 
I- ,/---- -. /- is known from [ll] that the contributions of 

/ / ‘4 \” 
/ \ integration over the sections rO, I’, of the 

\ \ deformed contour are small and can be neg- 
lected. Consequently, the main contribution 
is determined by integration over the section 

rp of the deformed contour. 

Fig. 1 

To invert the integral (4.2). let us study 
the presence of saddle points. The coordin- 
ates z,, of the saddle points are determined 
as the solution of the equation 

h (20) + +,, = 0 (4.3) 

This equation has a solution only for 

fill, < 60, 6, = arccos (TO-l) + arccos (r-l) 

The integral governing the contribution from the saddle point can be represented as 

(4.4) 

‘PO (4 = d (4 + z [h (4 + 61, $0 (4 = [‘PO2 (z) + gv, h, = -x&0_1(2) 

The saddle point with coordinate z,, is on the real axis of the z plane. For 6 == 0 it 
is at the point z = 0 and as f+ grows from zero to 6, it moves to the right approach- 
ing the point z = 1. Since there is no sin-lyn member in the integral (4.4), then 
the value of the integral does not change because the contour rP does not cross the 
real axis of the z plane upon passing through the saddle point. 
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In evaluating the integral (4.4) by the saddle point method it must be taken into ac- 
count that poles whose coordinates z, are solutions of the equation F1 = 0 are located 
in the first quadrant of the z plane, where FI is defined by (2.14). We select the me- 
thod of evaluating the integral (4.4) depending on whether the saddle point is near one 
of the poles or not. If the saddle point is not near any of the poles, then evaluating the 

integral (4.4) by the ordinary saddle point method, we have 

M, = - D (zo) C (zo) d”’ (q,) I@ (zo) (1 - zo2)“’ [ Fl’Fz] A__h,eixJlo (G) 
Z=ZO 

C (.zo) = (1 - 1/2 (1 - zo2)*~’ [(r2 - ,zo2)+ + (ro2 - 2.02)+]},-“2 

$0 (zo) = [d2 (zo) + g211’* (4.5j 

When the saddle point is near a pole with coordinate zg, then we evaluate (4.4) by the 
method proposed in the foreword to l-121. To do this, let us replace the slowly varying 
integrand 

E (z) = D (2) ‘P,, (z) I&-*‘” (z) [F,Fi-lLa, 

by its approximate expression 

E (z) z Eo (z) (z - 2,)-l, E, (z) = D (z) rpo (z) I&*“(Z) [(dF, / dz)-lFh~~. (4.6) 
s 

After such a substitution. the integral (4.4) becomes 

iM,= - ; 
‘12 8 

0 a 
Eo (z) (z - zi)-leiX+o (2) dz (4.7) 

rP 

When the pole with coordinate z, is to the right of the contour of steepest descent pas- 
sing through the saddle point parallel to the imaginary axis in the z plane,(4.7) is de- 
termined by the formula 

M,, = - i (imf’*Eo (zo) WT [ko (zJ - zo)] eixJlo (‘d 

I/VT (z) = e-2’ [I + +i& e;“d:] 

ko = &I$” (1 - z~~)-“T-~ (zo) ch (zo) I&“’ (zo) 
(4.8) 

(The function wr is tabulated in [12]). When the saddle point is sufficiently far from 
the pole, then 

WT [k, (z, - z,)I ==: in-‘/” k,-l (zs - zo)+ (4.9) 

Substituting (4.9) with (4.6) taken into account into (4.8). we obtain a result correspond- 
ing to (4.5) which has been obtained by the customary saddle point method. When the 
pole with coordinate Z, is to the left of the steepest descent contour of the saddle point 
method, evaluation of the integral (4.7) yields 

M, = M, + i (im)““Eo (z,,) WT [ko (z,, - z,)] ei”“” (*‘) 

M, = - 2i (isn)“Eo (z:) eixlLo (‘Q) (4.10) 

Here MS is the contribution to the integral (4.7) at the pole with coordinate rS. For 
fi,, > 6, the value of the integral (4.2) is determined as the sum of contributions at 
the poles with coordinate 2, in the first quadrant of the z plane 

Kk = - 2i (izn)“’ D (z,) cpnk (zJ $12 (z,) [(dF, /~z)-~F,],=, e*“nk (*,’ 
I=Zsnk 

(4.11) 
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On the basis of the preceding, the echo signal (4.1) can be represented as 

pe = B, 3 g (It’) [PO” + i i ,ii P:~^-] dz (4.12) 
--m k=l n=o s==l 

B, = A, (2r,,r)-‘ia (4.13) 

PoF _- Go @) e-is [r-h WI, psnk. = Gsnk (2) e-irCr-%k C’s)1 (4.14) 

Depending on whether the saddle point is far from or near to the pole with coordinate 
zS, the function G, (x) in (4.14) is evaluated by means of one of the following formu- 
las : 

Go (4 = - D ho) C (4 d”” (4 G’ Cd (1 - C)“. V?Fzl A=A 
P=ZgO 

(4.15) 

G, (x) = - i (ixn)Y’E, (zo) WT (Ic, 1 2, - zo I) sign (Re 2, - zo) (4.16) 

The function Gsnk (x) in (4.14) is evaluated by the formula 

Gsnk tx> = - 2i (ix@“* D h> %k (d $;? (2,) I(@‘, / dz)+FJ A=h 
*=*pk 

H (6,k - 6,) 

(4.17) 
6,= --h [Re (zJ1 

Here the quantity 6, is determined by using (4.3) from the condition that the saddle 

point is under the pole with coordinate z,. The functions pOF, pzxk in (4.12) are com- 

ponents of the stationary echo, i. e. the ecno signal originating during incidence of the 
stationary spherical wave 

on the shell. 
pi = Aol-le-ix(7-1) 

The function po” determines the echo reflected from the shell surface by the laws 
of geometric optics, and the rest pz,{ is the echo radiated by the circumferential and 

creeping waves being propagated respectively in (k = 1) and opposite to (k = 2) 
the direction of the polar angle 6. To calculate the radiated component of the echo signal, 
the contributions from the diverse modes (in s) of the circumferential and creeping 
waves and the contributions from the different rotations (in n) of these waves around 

the shell are summed in (4.12). The quantities 9” (z,), qrLk (5) in (4.14) determine 
the time elapsed on the path from the source to the observation point, where d (z,), 

d (zs) determine the times elapsed in propagation from the source to the shell in the 

fluid and from it to the observation point, and h (z,J + tink on the path in the shell 
or in the fluid around the shell. 

I Fig. 2 
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Figure 2 shows the projections on the 6 = 0 plane of paths from the source to the 
observation point for the reflected wave and one mode of the circumferential waves in 
(k = 1) and opposite to (k = 2) the directions of the polar angle6 for r >) 1, x0 >> 
1. Figure 2a shows the paths for PoF, pfnl for n = 1 and ~6, for n = 0 in the case 
fi < fi,, and Fig. 2b shows the paths for poF and psnl, psnz for n = 0 in the case 

6 > 6,. 

6. Inversion of the Fourier time tr&naformrtion. bet us rewrite 
the echo signal (4.12) as 

(5.1) 

1, = 1 g(x) G,(x) ev I--ix [r - %, (~,)I~ dx (5.2) 
--m 

Isnh- = 1 g (x) Gsnk (X) exP {-ix [r - $nic (0 dJ: (5.3) 

It is proposed to calculate the integrals (5.2), (5.3) by the same method, hence let us 
examine the inversion of just the integral (5.2). 

By using the convolution theorem the integral (5.2) can be represented as 

I, = 2?;; ’ f(5)T(r-L5)& 
f 

(5.4) 

0 

T(T) = 1 exp [b(z) - izrl da, b (x) = ln GO (x) + ia% (20) (5.5) 
-00 

Here f (‘6) is the law of pressure variation in the incident pulse (1.4). Let us examine 
inversion of the integral (5.5) by using the approximation 

b (x) = b, + b, (x - x,,) - b, (cc - x,)” (5.6) 

where 5, is the characteristic frequency of the pulse (1.4) incident on the shell. In the 
absence of such a characteristic frequency, the frequency corresponding to the maxim- 

um value of the function g(x) should be taken as x0. The coefficients b,, b,, b, in 
(5.6) can be defined as the coefficients of the Taylor series expansion of the function 

b (2) at x = z. or by some other method of approximating b (x). Substituting (5.6) 
into (5.5), we obtain the following approximate formula for T (T) after calculations : 

T (.t) = (n / b,)’ 2 esp [b,, - ix,7 - (T + ib,)2 (4bJ11 (5.7) 

If the pressure in the incident pulse (1.4) varies as 
f (r) _ @,T (5.3) 

then by substituting (5.7), (5. 8) into (5.4) we obtain 

IO = % 10 (Y,) - 0 (Yp)l exp (h” - ix,t) (5.9) 

y, = (t + ib,) 2-1b;‘f’2, yp I (z + ib, - z,,) 2-lb,“’ 
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In the limit case b, = 0, Re b, = 0 , formula (5.9)becomes 

I, = G, (x0) e-i1o [r-h (20~ [H (r - Im b,) - H (.t - Im b, - z,)] 

The echo signal (5.1) consists of one reflected echo pulse I, and of two (k = 1, 2) 
double (s = 1, 2, . . . . n = 0, 1, . ..) series of radiated echo pulses I,,,k. Because of 
damping the number of radiated pulses whose amplitudes differ from zero in practice 

turns out not to be larger, and the series in (5.1) converge rapidly. 
On the basis of the approximations used and the approximate methods of evaluating 

the integrals, the use of the proposed method of evaluating the echo signal can be justi- 

fied only for incident pulses of oscillatory nature, and whose characteristic frequency x, 
is large. On the other hand, on the basis of the hypotheses of Timoshenko-type shell the- 

ory, the characteristic frequency x, should not be so high that the wavelength of the inci- 
dent pulSe would be commensurate with the shell thickness. Admissible values for the 

characteristic frequency z, can be characterized by the inequalities 

R kh-l > x&1 > 1 

where the signs of the inequalities should here be understood in the sufficiently strong 
sense. 
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